Significant figures

- 1) Calculate the pressure exerted by 6.9 g of argon in a 0.07500 L container at 11.5 °C.'
- 20.00 mL of vinegar was titrated with a 0.11M NaOH solution. NaOH reacts with acetic acid according to the equation below. CH₃COOH(aq) + NaOH(aq) -> CH₃COONa(aq) + H₂O(I) Three concordant titres were obtained and the average titre was 15.35 mL. Find the concentration of the vinegar solution to the right number of significant figures.
- 3) *Methanol*, CH₃OH, undergoes combustion according to the equation 2CH₃OH(l) + 3O₂(g) -> 2CO₂(g) + 4H₂O(g) In an experiment to determine its suitability as a fuel, a sample of methanol underwent complete oxidation in a bomb calorimeter. The calorimeter was first calibrated by passing a current through an electric heater placed in the water surrounding the reaction vessel. A potential of 5.251 volts was applied for 3.00 minutes. The measured current was 1.50 amperes and the temperature of the water and reaction vessel increased by 0.593 °C.
 - i. Determine the amount of energy, in kJ, supplied to the bomb calorimeter. Energy (Joules) = Voltage X amperes X seconds
 - *ii.* Determine the calibration constant, in kJ $^{\circ}C^{-1}$, for the calorimeter and its contents.

4) Four 20.00 mL aliquots of a solution of HCl of unknown concentration were titrated against a 0.4521 M NaOH, the results are shown on the table on the left.
a) Find the average titre using the three concordant results.

Trial	1	2	3	4
Final burette reading / cm ³	25.11	39.12	14.15	28.20
Initial burette reading / cm ³	10.10	25.11	0.15	14.15
Volume used / cm ³	15.01	14.01	14.0	14.05

b) Find the concentration of the HCl solution.